On bit-level trellis complexity of Reed-Muller codes

نویسندگان

  • Chung-Chin Lu
  • Sy-Hann Huang
چکیده

A formula, which relates the state dimensions of a minimal trellis of a Reed-Muller code to those of another Reed-Muller code with lower order and shorter length, is derived in this correspondence. State dimension at every position of a minimal trellis of any Reed-Muller code can be obtained by a recursive application of this formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On complexity of trellis structure of linear block codes

This paper is concerned with the trellis structure of linear block codes. The paper consists of four parts. In the first part, we investigate the state and branch complexities of a trellis diagram for a linear block code. A trellis diagram with the minimum number of states is said to be minimal. First, we express the branch complexity of a minimal trellis diagram for a linear block code in term...

متن کامل

The Treewidth of MDS and Reed-Muller Codes

The constraint complexity of a graphical realization of a linear code is the maximum dimension of the local constraint codes in the realization. The treewidth of a linear code is the least constraint complexity of any of its cycle-free graphical realizations. This notion provides a useful parametrization of the maximum-likelihood decoding complexity for linear codes. In this paper, we prove the...

متن کامل

Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes

In this paper, we present a new soft-decision decoding algorithm for Reed-Muller codes. It is based on the GMC decoding algorithm proposed by Schnabl and Bossert [1] which interprets Reed-Muller codes as generalized multiple concatenated codes. We extend the GMC algorithm to list-decoding (L-GMC). As a result, a SDML decoding algorithm for the first order Reed-Muller codes is obtained. Moreover...

متن کامل

Tail-Biting Trellises of Block Codes: Trellis Complexity and Viterbi Decoding Complexity

Tail-biting trellises of linear and nonlinear block codes are addressed. We refine the information-theoretic approach of a previous work on conventional trellis representation, and show that the same ideas carry over to tail-biting trellises. We present lower bounds on the state and branch complexity profiles of these representations. These bounds are expressed in terms of mutual information be...

متن کامل

Optimal Linear Codes of Dimension 4 over GF(5)

[48] __, " On complexity of trellis structure of linear block codes, " IEEE [49] T. Klgve, " Upperbounds on codes correcting asymmebic errors, " IEEE [SO] __, " Minimum support weights of binary codes, " IEEE Trans. Inform. [53] A. Lafourcade and A. Vardy, " Asymptotically good codes have infinite trellis comwlexitv. " IEEE Duns. issue on " Codes and Finite Geometries "). [59] __, " The shift b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1995